
Point Network - A Holistic Implementation of Web 3.0

Serge Var
<serge@pointlabs.org>

Dr. Amaury Hernandez
<amaury@pointlabs.org>

Darren Jensen
<darren@pointlabs.org>

Denis Voropaev
<denis@pointlabs.org>

Abstract. Web 3.0, also known as decentralized internet, is a term designating an

envisioned peer-to-peer network, run on a consensus-defined set of protocols,

open for everyone, decentralized, transparent, neutral, permissionless,

censorship-resistant, and privacy-preserving, which could potentially replace the

current generation of the internet protocols due to its improved security and

privacy. This journey toward Web 3.0 started with applications such as Tor,

Bittorrent, Bitcoin, Ethereum, and IPFS, and now blossomed into a myriad of

projects under the label of “Web 3.0”. However, few achieve these desired

properties because, typically, only a few components are sufficiently

decentralized. This white paper describes Point Network, a set of software

components and protocols as proposed decentralized replacements to all standard

parts of the modern internet. It includes a blockchain-powered consensus layer, a

decentralized storage layer, decentralized domains and identities, and a

web3-enabled browser that allows users to access the network directly. To

exemplify how Point Network enables Web 3.0, we provide a set of common Web

2.0 applications reimagined using our architecture, such as Point Mail,

end-to-end encrypted email, Point Social, a social network redesigned in the Web

3.0 way, and others. In this way, Point Network presents significant improvements

on the core protocols of the legacy internet that can be achieved regarding

privacy, security, censorship-resistance, and transparency. It thus fulfills the

defined criteria for Web 3.0 in full.

Draft v0.5.1, last update: May 23, 2022

Table of Contents

Introduction 5

Point Network Architecture 7

Architecture Overview 7

Request/Response Lifecycle in Point Network 8

Point Storage 10

Storing and Retrieving Files 13

Directories 15

Private Files 16

Settings Files 16

Small Files 17

Transit Files 17

Identity Management 18

Key Pairs 18

Identities 19

Key-Value Store, Domains and Websites 19

Identity Transfer 19

Delegation of Control 20

Subidentities 20

Multi-Signature Actions on Identities 21

Social Recovery 21

Initial Identity Distribution 22

Point Browser 23

Introduction 23

PointProxy Request Capture 23

Isolation from Web 2.0 23

Point Extension 24

Point SDK 24

Legacy “Web3.js” SDK 24

Other chains 24

Confirmation window 25

Web3 Login 25

Notification manager 26

Internal Apps 26

Point Home 26

Point Wallet 26

Multi-Chain Support 26

Send to Identity Handles 27

Send to Identity Handles on Different Chains 27

Vaults (Two-Factor Authentication in Web3) 28

Privacy 29

Point Explorer 31

Potential Applications 31

Censorship-resistant websites 31

Interacting with dApps on several chains 32

Decentralized End-to-End Encrypted Email 32

Decentralized Social Media 32

Decentralized Facebook, Reddit and Discord 32

Decentralized Youtube 32

Decentralized Telegram 32

Decentralized Zoom 32

Supporting Communities and Content Creators 32

Storage Archives 33

Decentralized Github 33

Digital Collectibles (e.g. art NFTs and game assets) 33

Signatures and Badges 33

Manageable Personal Data/KYC Identities 33

Digital Canaries 33

E-commerce 33

Zero-knowledge targeted advertising 33

DAO, Crowdfunding and Governance 33

Point Network for Enterprise 33

Conclusion 33

References 33

Introduction
The internet's privacy and security, as they currently stand, present multiple flaws.

Information security specialists, cryptographers, and free speech advocates are fighting an
uphill battle.

Insecure protocols. The internet was not initially designed with security in mind [DeNardis,

2007]. Decades later, we still have to suffer from the security-as-an-afterthought approach.
Hardware and software vendors are barely catching up with zero-day vulnerabilities, with lines
of code and the number of dependencies growing geometrically, and attacks becoming
increasingly more sophisticated [Dessouky et al., 2020];

Mass-surveillance. Government intelligence agencies, to conduct mass-surveillance in the
name of national security, intentionally lower everyone’s protection mechanisms by
introducing backdoors into hardware and software [Lear, 2018], keeping zero-day vulnerabilities
they find to themselves instead of helping patch them [Moshirnia, 2018] [Slupska et al., 2021], and
hoarding everyone’s private files, emails, photos, documents, pictures, calls, geolocation and
browsing history in massive government data centers [Coddington, 2017]. Not only it has been
revealed that this information gets abused by government employees for personal, career and
political reasons [Slobogin, 2007] [Anderson, 2019] [Snowden2019], but it has become obvious that
even highly classified information in intelligence agencies is not secure from theft1 [Shane et al.,

2017] [Brevini, 2017], and if unfettered access to the full archives of billions of people’s digital
lives falls into the wrong hands, the consequences are incalculable.

Censorship. The coalition of the largest social media corporations colloquially known as
“big tech” enjoys unprecedented monopolistic control over the flow of information [van der

Schyff et al., 2020] [Nadler and Collins, 2017] [Hallam and Zanella, 2017] [Harris, 2020] [Hubbard, 2020],
runs opaque courts with unnamed unelected judges without effective appeal mechanisms,
occasionally participates in synchronous events of removing social media accounts of the
targets, also known as “deplatforming” [Rogers, 2020], and actively meddles in social discourse
by censoring certain subjects, links and hashtags and using artificial intelligence to boost
certain voices and suppress others [Gunitsky, 2015]. Alternative social media platforms could not
solve the problem, because their Achilles heel is getting refused service by the hosting

1 CIA lost hundreds of classified documents and cyberattack tools in the Vault 7 Leak
https://nakedsecurity.sophos.com/2017/03/07/wikileaks-drops-huge-cache-of-confidential-cia-documen
ts/, and the fact that a 29-year old NSA employee Edward Snowden was able to exfiltrate hundreds of
thousands of top secret documents undetected until published [link]

https://nakedsecurity.sophos.com/2017/03/07/wikileaks-drops-huge-cache-of-confidential-cia-documents/
https://nakedsecurity.sophos.com/2017/03/07/wikileaks-drops-huge-cache-of-confidential-cia-documents/

providers2. Additionally, their domain names can be taken away at any moment [Kopel, 2013]

[Molloy, 2021].

While the legal routes taken by public organizations and movements did not yield much
change in these areas, technologists have been focused on trying to solve the problems with
cybersecurity and cryptography protocols, algorithms and tools. What unites projects such as
Bittorrent, Tor Network, Bitcoin, Ethereum, Signal, IPFS and the likes is the spirit of giving back
the power to the internet users through decentralized peer-to-peer networks. A shared vision
for what the internet should be like permeates their communities, and developers are working
on bringing parts of it to reality with these projects. This vision of the global network that is
open for participation, free from censorship, permissionless and privacy-preserving has been
nicknamed “web 3.0”, or “decentralized internet” [Alabdulwahhab, 2018].

Engineers behind Point Network have been inspired by the same ideals, and work towards
the same goals. We believe that most of the building blocks necessary to build web 3.0 have
already been invented, it is only a matter of developing a few additional components and
linking them together.

There are several components that are crucial in the architecture of Point Network: 1)
decentralized identities (which includes decentralized domains), 2) a decentralized storage
layer (which uses Arweave), and 3) a web3-enabled browser (Point Browser) combined with a
locally running proxy software (PointProxy). To achieve our goals, we combine several
additional technologies and implementations.

In this paper we provide our vision of the future of web 3.0. We do not wish to cultivate
misleading expectations that all of the features, or all of the decentralized applications
described in here will be present in our first test implementations. Nonetheless, it marks our
direction for where we believe web 3.0 technology is headed, and we expect engineering teams
and dApp teams to get inspiration from this work, while not taking this as a definitive and final
gospel dictating how it must look in its final form.

2A clear example is the shutdown of Parler [Otala et al., 2021] [Kierstead, 2021].

Point Network Architecture

Architecture Overview
Below is an overview of Point Network architecture (Figure 1).

Figure 1. Simplified Point Network architecture

Point Dashboard installs, updates, and manages the rest of the software; it also shows the
status of the various components to a user.

Point Browser is a fork of the Mozilla Firefox browser, which is configured to be a web 3.0
client communicating with Point Node. In particular, it has a hard-coded setting that makes all
requests go through a port taken by PointProxy, a local proxy software that captures every
request. Point Browser is also packed with Point Extension, which enables Point SDK to be
used in decentralized applications, sends notifications, manages the confirmation window, etc.

Point Core (Node) is the backend part running on a user’s computer. It contains the
following modules:

● PointProxy, which is a local proxy software listening on a specific localhost port,
capturing all requests from Point Browser, communicating with other components of
Point Node, and returning back the response;

● Storage module, which uploads and downloads files from and to Arweave decentralized
storage network using content-addressable hashes;

● Blockchain module, responsible for communicating with various blockchains;
● Wallet, responsible for managing user’s private keys, sending and receiving tokens and

cryptocurrencies on multiple chains, and fetching transaction history;
● Identities module, communicating with PointDNS smart contract to associate

identities with public keys, and retrieve information about decentralized domains;
● Deployer, a software tool for deploying decentralized applications and websites onto

Point Network;
● and various other extra modules not shown in the simplified Figure 1 above for

simplicity.

Request/Response Lifecycle in Point Network
A typical lifecycle of a request-response combo on Point Network looks like this. We will use

https://example.point/user/mike as our example URL for a website on the
decentralized internet, to where a user navigates in Point Browser.

DNS request. Normally, a browser issues a DNS request to a centralized DNS server, turning
an alphanumeric domain name into an IP address to reach out to next. However, there is no
example.point domain on the legacy internet3. Instead, a locally running proxy software

3 Conversely, all connection to the legacy internet is severed from inside Point Browser.
Content-addressable Web3 is fully isolated from the “old internet” similarly to how blockchain scripts
(smart contracts) are run in environments isolated from the real world, so much so that in order to
retrieve any data from the “external world” special “oracles” and “oracle networks” are needed.

called PointProxy, which is part of Point Network software and whose local port is hardcoded in
Point Browser’s settings, intercepts all requests, including DNS requests, and returns
localhost for all DNS requests.

HTTP request. Next, a browser typically contacts the server using the provided IP address
with an HTTP request (optionally wrapped in SSL/TLS layer for traffic encryption). The HTTP
request includes: a hostname, a path to the requested file, method type (GET, POST and others),
variables/body, and other metadata/headers. In the case of Point Network, the HTTP request gets
intercepted by PointProxy.

Preparing a root directory hash and a routes file hash. From the Hostname part of the
request (example.point in our case). PointProxy looks at the key-value storage attached to
that domain in the Identities contract to establish which root directory hash and routes file hash
are currently attached to this domain by the identity owner.

Let’s assume that the root directory hash in our example is cf5a...04ef. When
downloaded from Arweave, this returns a directory with folders css/, js/ and files
layout.zhtml, index.zhtml and user.zhtml (content-addressed by hash as
well).

Let’s assume that the routes file hash in our example is 48ad...21de. When
downloaded from Arweave, this returns a JSON file: {"/": "index.zhtml",
"/user/:name": "user.zhtml"}

Routing the request. In our example, the requested URL matches the route /user/:name
pointing to user.zhtml inside the root directory (and "mike" will become the value of a
template variable name). If the URL hadn’t matched any route, PointProxy would try to
establish whether it matches a path inside the root directory, in which case, the contents of this
file would be returned.

Rendering a template. If the file ends with “.zhtml” (as it does in our example case), it first
passes through a ZHTML renderer. ZHTML is a backend language available to Point Network
dApps, inspired by templating languages such as Jinja. The output of a ZHTML renderer is
HTML, which can be parsed by the browser.

Special routes. There is a list of special routes that are considered reserved for extra
functionality. For instance, there is a route group /_storage/{id} which, when invoked on
any domain, returns a file from decentralized storage based on the supplied id.

This is done in order to discourage developers of web3 to continue using unsafe centralized facilities
to store, and instead forces

Point Storage
The most valuable part of the current internet, without which most of the algorithms would

have nothing to operate on and would have been without use, is the content. A new kind of
internet would need to store the content somewhere, while adhering to the strict standards of
censorship-resistance, surveillance-resistance, and openness we set in defining this new
network. Point Network engineers have considered several options that are available, and
whether they are suitable for the set purpose.

Cloud storage. This is the default option for the current generation of the internet. In the
majority of the cases, a file’s location is defined by http or https protocol designation, an IP
address or a domain name which gets resolved to an IP address, and a path to that file. Here are
the downsides of cloud storage that we believe makes it unsuitable for web3.0:

No data integrity. The server on the other end is free to serve any content, and users,
lacking data integrity verification tools, would generally miss it if it were modified. For
example, when one stores files on Google Drive or Amazon Web Services, they can never
be sure that the files they download back have not been modified. It is even more
dangerous in storing assets for web applications; for instance, ProtonMail is known for
their ability to decrypt email in the browser and never have the decryption keys sent to
any server, and people can freely inspect JavaScript files from ProtonMail to make sure
this is how it works; however, absent data integrity checks, a target would never notice
if ProtonMail or a party having access to their servers decided to serve a modified
JavaScript file to a user, which would in fact capture the password and the decryption
keys and exfiltrate them onto an attacker’s server.

Man-In-The-Middle attacks. Because of the lack of data integrity checks, using cloud
storage is also vulnerable to the man-in-the-middle attacks, where a party located in
between a server and a client has the ability to intercept and modify the data being
exchanged. On the way to the server, there are routers and sometimes open Wi-Fi
networks, internet provider companies, Internet Exchange Points (IXPs), and
government agencies in different countries, all of which can be a point of attack. While
the use of HTTPS/SSL makes it more difficult to modify the server-client
communications, and a majority of modern websites is using HTTPS, there are known
situations where due to the centralized nature of SSL authorities, the signing
authorities were compromised and valid malicious certificates were generated, which
even led to an (albeit delayed) emergency exclusion of those SSL authorities from
browsers, but the damage might have already been done at that point [Taylor, 2019]
[Alwazzeh et al., 2020].

Potential for censorship. There are plenty of widely known cases when cloud storage
providers removed content without the consent of the uploader, citing various reasons,
or even whole accounts and the content [Augier, 2016] [Martiny, 2018].

Clouds disappear. Cloud storage is not always perfectly reliable, and there are known
incidents in which not only the information was inaccessible for a prolonged period of
downtime, but sometimes even irrecoverably lost [Gagnaire, 2012]. For example, on
March 10, 2021, a major fire broke out at an OVHcloud datacenter in Strasbourg,
France, damaging the equipment and the building, with some websites and clients
having their content irretrievably destroyed4.

Breach of privacy. Cloud providers have direct access to the hardware, therefore,
without extra mechanisms, they have access to the full contents of people’s private
data. [Shakor, 2019] There have been cases where journalists’ private Google Drive
documents, which they did not share with anyone, were mistakenly censored citing
presence of prohibited materials in violation of the Terms of Service, and the users
were locked out of their Google accounts5.

Blockchain as a storage. Next, a blockchain itself was considered as the storage for web 3.0.
Some decentralized social media, such as Steem (now HIVE), attempted to use it. However, it
presented additional problems.

Problematic scalability. In a blockchain-powered network, every full node has to store
everything that is on the blockchain, otherwise participants endanger themselves to a
risk of nobody storing a particular transaction/account data, which means it would be
lost forever. Which means that if a web3.0 project uses blockchain as the storage layer,
and somebody uploads a random image, every full node in the world has to now store it.
At least for the most known cryptocurrencies in the world, there is a decrease in the
number of full nodes, due to two factors: 1) the requirements for hosting a full node
grow superlinearly, including the growing storage requirements, which increases the
costs6, and 2) while the costs are rising, the incentive provided for full node operators to
continue running the nodes stays at 0.

Prohibitively high price of storage for the user. Because of the aforementioned issue (all
full node operators have to store all blockchain data), blockchains employ economic
algorithms, counteracting abusing the blockchain as a storage layer indiscriminately.

6 According to https://etherscan.io/chartsync/chaindefault, the storage required for a synchronized
Ethereum full node has exceeded 500 GB

5 “Google is locking people out of documents, and you should be worried”:
https://mashable.com/article/google-docs-locking-people-out

4 https://us.ovhcloud.com/press/press-releases/2021/fire-our-strasbourg-site

https://etherscan.io/chartsync/chaindefault
https://mashable.com/article/google-docs-locking-people-out
https://us.ovhcloud.com/press/press-releases/2021/fire-our-strasbourg-site

There are costs associated with storing data on the blockchain. These costs, compared to
the projected storage needs of the new generation of the internet, make it practically
impossible to consider this as an option. For example, in 2017 it was estimated7 that to
store 1 GB of data on Ethereum it would cost around $76,000, and it should follow that
with a price increase and a demand increase this cost would continue to grow.

Outsourcing to other blockchains does not solve the problem. In 2019, Vitalik
Buterin, creator of Ethereum, proposed8 using another blockchain, Bitcoin Cash, as a
data storage layer for Ethereum 2.0, since the storage price on Bitcoin Cash chain has
been much lower than on Ethereum. The limitation of this approach is that with the
shift from using high-demand Ethereum chain as a data layer to using Bitcoin Cash, the
demand for Bitcoin Cash transactions would start to increase, which, in turn, would
increase the data storage cost on Bitcoin Cash, creating the same problem.

IPFS. In May 2014, Protocol Labs introduced IPFS, which is a protocol and peer-to-peer
network for storing and sharing data in a distributed file system. It is now commonly used by a
large number of dApps as a storage layer. In a hybrid Ethereum+IPFS setup, the content is
stored and served on the IPFS network, but only its hash, which is taking only 32 bytes, is
stored on the blockchain. This property is known as “content-addressing” (see below), where a
file is identified not by a malleable URL, but by the hash of its contents. The downside of using
IPFS for Web 3.0 is in the lack of incentives for the network to store and serve the data. For
example, if a user wants to publish photos of their pets on decentralized Facebook, they would
have to stay online in order to serve this content, as, presumably, not a lot of participants would
be interested in storing it. As soon as the original user goes offline (and they are the only party
that has been serving the content), the content goes offline as well, and becomes unreachable.
It is possible for other users of the network to “pin” the content they want to help store when
the original user is offline, but, as mentioned, IPFS lacks incentives to ensure that Web 3.0
content is always online and accessible, which is important for the decentralized internet to be
functioning reliably.

Filecoin. Because of lack of incentives in IPFS, in 2017 Protocol Labs announced that they
began working on another project called Filecoin, which would allow users to pay to
decentralized storage providers to host and serve their content while they’re offline. This
architecture is closer than all previous approaches to the ideal requirements for a Web 3.0
storage layer, however, it has several downsides too. One of them is that the zero-knowledge
proofs required to establish that storage providers (“storage miners”) continue to store the files,
require expensive hardware, not affordable for a majority of users that would like to become

8 https://ethresear.ch/t/bitcoin-cash-a-short-term-data-availability-layer-for-ethereum/5735

7 https://ethereum.stackexchange.com/a/896

https://ethresear.ch/t/bitcoin-cash-a-short-term-data-availability-layer-for-ethereum/5735
https://ethereum.stackexchange.com/a/896

storage providers, as a result decreasing the level of censorship-resistance. Another issue is that
users have to strike deals with specific storage providers, specifying a time period for which
their files should be stored. After the period expires, it is up to the users to strike more deals
with other storage providers to renew the storage. If the users do not do it, the content becomes
lost, as it is not in the storage providers’ interests to continue to use the space for the expired
content as opposed to new deals. This might lead to a situation where a user that has been
paying for the files a lot of people were relying upon, suddenly stops paying, and the content
disappears.

Arweave. Despite the fact that there are a number of other projects implementing
decentralized storage, reviewing them falls out of the scope of this paper. The gradual review of
potential candidates, from cloud storage, to blockchains, to IPFS, to Filecoin, serves to help
understand the specific requirements that are needed for the Web 3.0 storage layer. This makes
it apparent why Arweave was eventually chosen for the Point Network storage layer.

Arweave is a peer-to-peer network for decentralized storage, defined in Arweave Litepaper
[Williams, 2018]. It is described as “a low cost, high throughput, permanent storage”, but there
are several specific properties that “checked all boxes” and made it desirable to be adopted as a
storage layer for Web 3.0.

● Incentives for storage delegation are built-in. Unlike IPFS, when you upload
something to Arweave, you pay to the Arweave network and it takes care of storing the
files. A web3 user doesn’t have to be online or pay to centralized pinning services for
others to be able to access that user’s posts, pictures or other files. The Arweave network
takes the responsibility for storing and serving the files continuously.

● Decentralization of storage. Unlike IPFS pinning services, which can go down, get
censored, or disappear, users don’t have to rely on a centralized entity to keep their files
online. Just like other peer-to-peer networks, Arweave network is composed of
decentralized storage nodes run by different participants. Which means that there is no
one centralized entity to attack.

● Redundancy built-in and homogeneous. On Filecoin, users can always choose several
storage providers to store and serve their files, but this is not required, and some might
prefer not to do it, in order to save on fees, which would decrease redundancy to n=1 and
could increase risks for this file to become unavailable should that one storage provider
go offline or stop performing its duties. On Arweave, the redundancy factor is
homogenous: when the system “notices” certain files are becoming rare, the system
automatically increases the payment for them, so that other network participants
download those rare files and they stop being rare.

● Permaweb, stored “forever”. Instead of constantly having to pay for the file storage
lease, like on Filecoin, on Arweave a user has to make a one-time payment to the

blockchain, which then gradually pays storage miners from that amount to store the
files. The initial cost a user pays to upload data to the Arweave network covers the first
200 years of storage. If data storage declines are anything greater than 0.5% per year,
this simply adds to the number of years that the data will be stored. The result is
comparatively cheap data storage costs over time.

This shows why Arweave was eventually chosen as a storage layer for Web 3.0 in Point
Network. Nevertheless, in order for Arweave to function as such, it needed to be extended with
extra layers of functionality and mechanisms, which are described in the following sections.

Storing and Retrieving Files
Since Point Network is using the Arweave network for storage, the details on how the files

are stored and the information on data availability guarantees are described in Arweave’s
litepaper [Williams, 2018]. However, there are extra additions from the Point Network side on
top of the standard Arweave storage mechanism, necessary to make it a storage layer for Web
3.0.

Content addressing. Some decentralized file storage networks, such as IPFS, have built-in
content addressability, which means that the way by which a file is referred to, its primary ID, is
the hash of its contents, which is useful for ensuring data integrity. This is not the case with
Arweave, at least from the external API side. When a file is stored, its hash (which is referred to
as data_root), is part of the transaction. But in the event when one needs to search the
network for a file, one normally uses not data_root, but txid – a transaction ID in which this
file was submitted to the network. An Arweave node or an Arweave gateway then return the
data from that transaction if they have it.

Point Network is using a content addressing schema, where each file’s ID is a 256-bit
keccak256 variant of SHA-3 hashing function. We then go around the issue of searching by
txid by adding a special tag to the transaction, with a key __pn_chunk_X_Y (where X and Y
are integers representing the current namespacing version of our experimental tests), and a
value being the hash of the file. Then, Point Network stores the file hash as a bytes32 field in
Solidity. When the file needs to be retrieved by its hash, first we find the transaction ID by the
hash ID, querying GraphQL API of Arweave storage counterparty using the special tag, getting a
list of candidate transaction IDs in which the file appeared, and then we ask for the file based
on txid.

Trust-less environment. One of the common use cases of Arweave is downloading or
viewing a file based on its transaction ID navigating to a URL on one of Arweave gateways in
their browser, such as arweave.net. However, that places trust in the Arweave gateway. We

assume that no Arweave node nor Arweave gateway can potentially be trusted with the valid
data being returned based on txid or hash, or that a transaction marked with a tag for the hash
requested really contains a file hashing to this ID. Therefore, for the data integrity to be
preserved, the storage layer of Point Network never blindly accepts the file returned. It verifies
that the file hashes to the hash requested. If it does not, the storage layer goes down the list of
other potential transactions. If none of them hash to the desired content, it treats the file as
unavailable.

Chunking. We define a chunk size limit as 262144 bytes = 256 KiB. If a file exceeds the limit,
we do not attempt to upload the whole file to Arweave, and instead split it into chunks based on
the chunk size limit, and uploads them in parallel. Each chunk has its ID based on the same
hashing schema as a file with the chunk’s contents would. Then, Point Network creates and
uploads a special chunkinfo chunk, the contents of which is serialized9 metadata about the
file (all chunk IDs assembled in a Merkle tree), including the full description of the Merkle tree.
Then, that chunkinfo chunk’s ID becomes the file ID, by which it is referred. To differentiate a
chunkinfo chunk from a file or a chunk, we write several bytes of chunkinfo prologue, which is
practically unlikely to happen at the beginning of a normal file.

On retrieval, the same happens in reverse: when we download the file by its ID, we discover,
using the prologue, that what we downloaded instead is a chunkinfo chunk. Then we parse it,
extract the chunk IDs, download the chunks, reassemble them into the complete file, and return
it as the result.

Next Version: In the current implementation, the chunkinfo chunk contains a JSON
dictionary with the following fields:

● type: a string indicating the type of the chunk. In this case, it is equal to 'file'
● chunks: an array of chunk IDs
● hash: designates a used hash type (defaults to ‘keccak256’)

○ The name of the field might be confusing. We are considering renaming it to
hashType

● filesize: an unsigned integer field representing the size of the file in bytes
● merkle: a field containing the Merkle tree for the chunks, squashed into a 1D array.

The chunkinfo chunk allows for easier discovery of the chunks based on file ID. Without
it, a client would have to obtain information about chunk IDs from somewhere, plus obtain
Merkle proofs that the chunks are parts of the requested file. Persisting this information on
the same paid storage level increases immediate accessibility of this information. However, it
might be beneficial to consider whether it is possible to skip the chunkinfo chunk in the

9 We initially propose using JSON for all serializations described herein.

future and use the chunk’s Merkle tree root hash itself as the file hash, and not the hash of
the chunkinfo chunk.

Additionally, consider replacing the term chunkinfo with fileinfo for more clarity.

Payment. Storing files on Arweave blockchain requires payment in Arweave’s native token
AR. To work around that, an ecosystem of Arweave Bundlers has been proposed and created,
which are network participants running Arweave nodes with expanded functionality. First, they
guarantee that if the payment has arrived, the data will be included in the weave and seeded.
Second, the payment can be done in a currency/token different from AR. In our case, payments
could be done with Point Network’s native token, POINT, which is then automatically
exchanged by bundler operators for AR to pay for the Arweave storage fees.

Directories
Directories in Point Network are represented by files with a map of filenames and

subdirectories as keys and hashes pointing to the files as values.

In the current implementation, directories are JSON files, having the following structure:

● type: the string ‘dir’
● files: an array of elements, pointing to files and/or subdirectories:

○ if the element is a pointer to a file, it is an object with the following structure:
■ type: the string ‘fileptr’
■ name: the file name inside the directory
■ size: the size of the file in bytes
■ id: file ID

○ If the element is a pointer to a subdirectory, it is an object with the following
structure:

■ type: the string ‘dirptr’
■ name: the subdirectory name inside the directory
■ size: the recursive size of all the files in the directory in bytes
■ id: file ID of the file representing the subdirectory

Point Storage implementation must implement method(s) allowing traversing the directory
structure, by recursively downloading subdirectories and files.

Private Files
Until now, we were discussing files which are intended to be exposed publicly on the

network. If the client needs to keep some of the files, it should apply a symmetric encryption
algorithm on top of the data for the chunk, such as AES. To not burden the client with storing
these symmetric keys, the entropy for this symmetric key could be deterministically derived
from the identity private key (yet it should not be possible to retrieve that private key from the
symmetric encryption key; this is achieved by using hash functions and HD wallets).

As a result, by merely having the identity private key it would be possible to regenerate the
AES keys on demand to decrypt the files. AES keys can be different and random for each
chunk/file, yet still deterministically regenerative, if we add to the entropy the hash of the
chunk/the file, before we hash it to produce the final AES key. This will allow sharing the keys
with other users when needed, without concern of exposing keys to other files.

An alternative scheme might be to use randomly generated AES keys, encrypt them with the
identity public key, and add at the beginning of each chunk/file. That way, the client is still not
burdened with storing the keys, and can always extract the AES keys by decrypting them using
public-key cryptography, although it increases the storage needed for each chunk.

Settings Files
The client, using the algorithm described, turns data into storage pledges, and RSA key pairs

(redkeys). However, it still begs the question of where this metadata should be stored.

We propose to store it on storage providers as well, encrypted with AES (see Private Files
section). That way, clients only have to keep track of that file’s ID (they can store it on the
blockchain, encrypted with AES or RSA), and if they have to log into Point Network on a new
device, it would download this data, decrypt it and continue from there. And since the data is
replicated across several storage providers, plus the fact that the file is encrypted and storage
providers cannot distinguish it from normal data, the concern that providers might censor this
data is alleviated.

Similarly, this can be extended to all settings and profile data for Point Network users. These
settings can be stored in a private directory on Point Storage, and in case they need to log into
Point Network on a new device, the software would download the directory and apply the
settings. Additionally, by implementing sequence ordering for settings files, updates to them
could be shared between devices, synchronized in real-time.

Small Files

Next Version: If a user has to store many small files, it is unreasonable and expensive to
create an Arweave transaction for each of them. In the future versions, we can consider
augmenting the directory data structure in such a way, that some of the files might be
pointers with byte offsets into the middle of a chunk, allowing to store multiple files in one
chunk. It would also be an appropriate time and place to consider adding compression, if
needed.

This needs to be discussed further, because if pointers into the middle of chunks are only
defined inside the directory schema, we cannot leverage this for pointers to files in Solidity,
as they are bytes32 pointing to chunkinfo chunks or files, and not directories; perhaps this
mid-chunk file pointer object could also be added to the chunkinfo chunks, otherwise the
format for referencing files on the blockchain has to be changed and augmented with byte
offsets.

Transit Files
When you have files that are not fully formed at the time they are requested (such as audio

and video streams, for example), it might be reasonable for the source of the file to
incrementally sign over the Merkle tree of all the current chunks and distribute these
signatures with each next produced chunk, plus the signature should be containing the hash of
the first chunk and the sequence nonce, proving that the source of the file stream intended to
augment the stream starting with the first chunk, with the current chunk.

That way, clients can refer to this stream by its ID (consisting of the ID of the first chunk, and
the identity of the uploader, to avoid two uploaders colliding with each other hash-wise) and
specifying the nonce of the last chunk they have. The network will help resolve these requests
into new chunks that are being uploaded and attached to this stream ID as continuation of the
stream.

Identity Management
Identity is an important part of web3.0. By identity here we do not mean KYC identities, or

personal identities corresponding to a person, but rather alphanumeric handles registered on
the blockchain, and everything that can be attached to it. A person/organization can own
several identities.

Before considering identities, we need to discuss key pairs, because identities are attached to
public keys.

Key Pairs
It is a standard in blockchain applications to generate a key pair of a public and a private key,

and identify a user by the public key. Commonly, cryptocurrency addresses are derivations of
public keys. Resources (such as balances, smart contracts, etc.) are then attached to these public
keys, and in most cases, every action that modifies these resources has to be signed by the
corresponding private key to be considered valid by the network, proving the ownership.

One of the mechanisms to increase user privacy has been to use HD (Hierarchical
Deterministic) wallets [Khovratovich, 2017] [Banupriya, 2021], allowing to derive many
additional key pairs from any key pair in a deterministic way (meaning that if we discard all the
information but have the original private key and the path to the subkey, we can always restore
the subkey), but have no apparent public relationship between any of them. We propose the
following multi-level hierarchy of HD keys:

● There is a master (“seed”) key pair derived from a mnemonic [BIP39]. This mnemonic is
the only thing a user is supposed to store in a secure and safe place, and enter on every
device they want to log into Point Network, since it provides access to all the subkeys.

○ The key pairs on the first sublevel are representing keys that attach to different
identities. A user can switch between these identities in Point Browser (See the
relevant sections below). From the public point of view, these key pairs are not
correlated and allow them to act on web 3.0 independently, preserving privacy.
These subkeys, in turn, help derive additional sub-sub-keys, which can be used
for following purposes:

■ The main key pair which is attached to an identity
■ Keys for holding cryptocurrency, with different purposes: normal wallets,

“credit card”-like accounts that are used to subscribe to services requiring
periodic payments (see Subscriptions section below), vault (see Vaults
section below), keys that deterministically provide entropy to derive keys
to use on other blockchains such as Bitcoin keys, Ethereum keys etc.

■ Keys used to communicate on the DHT network, and to pay for
storage/retrieval

Identities
An identity is an alphanumeric handle with ownership, set on the blockchain and attached to

a public key, with consensus that this public key is authorized to act on behalf of this identity.

In Point Network, an identity is that person’s:

● public payment handle, which people can use to transfer funds to them/send them
invoices, instead of traditional human-unreadable cryptocurrency addresses (read more
below on how to preserve privacy while sending cryptocurrency to a public handle);

● email address (see Decentralized Email section);
● website domain, i.e. a person with a handle @mike automatically gets access to the

domain space mike.point and all its subdomains (see Decentralized Websites section);
● handle for Instant Messaging (see Decentralized Instant Messaging);
● handle in decentralized social networks;
● and other purposes.

Practically, an identity is used to authenticate a user in all web3 dApps. On web3, users will
not have to make up a password to register on each website, remember the passwords, and
enter them on every login, because they will be logged in automatically with their identity.

Key-Value Store, Domains and Websites
Each identity has a publicly-viewable key-value store attached to it, with only the owner

being allowed to write to it.

Identity Transfer
Identities can be transferred to someone else, sold and auctioned off. Point Network should

have this functionality built-in, to not force it to be reinvented several times and scattered
across many smart contracts.

For privacy reasons, the reasonable approach would be to discard the key attached to the
identity after that identity is transferred (not remove it completely, but mark it as abandoned),
and not recycle it further attaching another identity.

Applications should be aware that the owner of the identity might change at any time (the
public key would change in such a case), and therefore have functionality that takes care of the
identity transfer and creates a new user when this event is emitted.

Delegation of Control
It should be possible to delegate control over an identity to another key temporarily, or to

another smart contract, or to a multi-signature smart contract (which is especially useful for
enterprise use cases, for example, having a marketing department and legal department sign off
on any transaction which is an update to the company’s decentralized Twitter feed, or having
an engineering team sign an update to the source code on decentralized Github before it gets

into the block). This also allows the management key to reorganize and to take away control
from specific public keys e.g. in case an employee contract is terminated.

Subidentities
Owning an identity allows the owner to register subidentities, and to delegate access to them

if needed. A subidentity adds a prefix to the original identity separated by a dot, e.g. an identity
store.samsung.point is a subidentity of samsung.point.

In decentralized websites, the subidentity becomes a subdomain, and in decentralized email,
it becomes an email address inside that identity.

Decentralized applications should treat subidentities the same way as standalone entities.
The difference between standalone identities is that the identity one level higher would be an
owner of all its subidentities and retains control over them, even if subidentities are delegated.
This might especially be useful for enterprise applications.

Next Version: The spirit we desire to bring into the web3 is not one of hostility and fierce
competition (also colloquially referred to as “maximalism” towards any favorite project), but
collaboration and interoperability between different projects. Therefore, a consideration
should be given on how to make Point Network identities interoperable with other
decentralized naming system projects. For example, native Point Network identities could be
given a suffix .point, while it would equally support projects such as Ethereum Name Service
(.eth), Unstoppable Domains (.crypto), Namecoin (.bit), and others; to enable such use cases,
Point Network would query the respective blockchains to establish the ownership. This
should be weighed against the possibility of causing confusion.

Multi-Signature Actions on Identities
For additional security, identities (and all resources associated with it, such as balances or

decentralized websites) could be owned by an M-of-N multi-signature (multisig). For instance, in
a 3-of-5 multisig, it requires any 3 or more persons from a designated list of 5 controlling
identities to make an action associated with the controlled identity valid on the network.

Traditionally, multi-signatures have been used to secure funds in a wallet, allowing to only
spend funds when the transaction is signed by several parties.

However, in Point Network, the effects of multisig mechanisms can be expanded to any
action on web3. As an example, an identity handle, and a corresponding domain name could be
owned by a 3-of-5 multisig. In that case, any proposed update to a website will not be accepted

immediately, but the parties involved in the multisig would receive notifications in Point
Browser, asking them to accept, revise or reject the proposed update to the website code.

In another scenario, a multisig might be put on a repository in Decentralized Github, such as
for a code commit to be merged to the master/main branch, it has to be approved by several
people first, and not just anyone having write access to the branch (a feature current centralized
Github lacks).

This presents a significant security improvement to the legacy internet mechanisms, where a
successful attack on one party which has access to a resource is often enough to compromise
the resource and inject malicious code into a website or a server. This improvement might
especially be useful when adding audit companies into the mix as one of the multisig parties on
a certain dApp.

Additionally, multi-signatures are not limited to simple M-of-N setups, and can be
customized and extended with additional functionality, such as veto powers, emergency modes,
and so on.

Social Recovery
Not requiring a user to create passwords for authentication with websites and using

mnemonics and keys instead already alleviates many security concerns [Buterin, 2021], such as
remembering to create strong passwords and remembering to have a different password for
each website. Passwordless logins also protect from the databases of passwords becoming
important targets for attackers. However, similarly to other cryptocurrencies, it shifts the
burden of security to each individual user. When a user’s private key/mnemonic gets
compromised, there might still be some mechanisms to protect them from having their key
stolen.

A user might want to specify a number of trusted individuals they know (e.g. their friends) as
their recovery agents. Then, as soon as that user notices notifications about action they did not
take, put their identity into Emergency Mode, which would allow agents to sign a
multi-signature transaction to help recover identity ownership and the associated resources
attached back to the user, to their new securely generated set of keys. Note that with this set up
the user does not give these individuals power over the account while it’s not been put into
Emergency Mode. Moreover, the transaction designating these individuals as recovery agents
can be stored in an encrypted form on the blockchain (in order to timestamp it but hide the
contents), and only revealed when the account is put into Emergency Mode, so that nobody
other than the owner could know which individuals are designated as recovery agents for any
identity or whether this functionality is enabled at all.

Having this functionality implies adding delay periods for important actions, such as
transferring an identity, or moving large amounts of money out of a wallet (see Vault section);
otherwise, the user might notice the breach too late, after there would be nothing left to
recover.

It would be practical to think of other recovery mechanisms to support, such as if the person
simply loses their key. They can include social recovery, escrow recovery, backup keys etc. All
the recovery mechanisms must not be compulsory and must be made optional.

Initial Identity Distribution
One of the problems naming systems encounter is the abuse by cybersquatters, registering a

large amount of domains/identities in hopes to sell them for large sums of money to high
profile people and companies. This could negatively impact the ecosystem, because when these
people and companies would check out the project and find out that their identity is taken by
cybersquatters, this might be an important factor discouraging them from using it.

We propose, to perform initial identity distribution, to have a temporary centralized oracle10

in place, attached for the first 9 months after launch, monitoring Twitter feed of a certain
activation hashtag, which would allow Twitter handles to be migrated to Point Network
identities. This would not preclude people from registering identities that are not taken by
Twitter handles, if they don’t wish to register using their Twitter account or if they don’t have
one. After this period, the oracle would be detached, and anyone would be able to claim the
identities that were not claimed, sold off in an auction.

10 Alternatively, the temporary centralized oracle can be replaced by a temporary decentralized oracle
network, using off-chain workers.

Point Browser

Introduction
Point Browser is a web 3.0 browser, configured to work with Point Node. It is a fork of Mozilla

Firefox with extra functionality and configuration changes.

Point Browser is not merely a browser with the ability to access Ethereum or IPFS networks,
as, for instance, Brave Browser does. Just as Tor Browser is used to access Deep Web (.onion
domains), Point Browser is used to access Web 3.0 (.point domains). Therefore, it is not in the
same category as and is not competing with Google Chrome, Mozilla Firefox, or Brave Browser,
but rather using Firefox as a stable browser software to provide users of Point Network with a
familiar browsing experience.

PointProxy Request Capture
The most important configuration option for Firefox in Point Browser setup is that it is set to

proxy all requests through a port on which PointProxy is listening and capturing all requests,
processing them using other Point Node modules, and returning responses back to the browser.

Therefore, even though .point domains do not exist on the legacy internet, PointProxy, by
capturing all DNS and HTTP(S) requests, is able to imitate the existence of these domains in the
legacy paradigm by returning valid DNS and HTTP responses to the browser.

Isolation from Web 2.0
Web 3.0, as defined by Point Network implementation, is a network completely isolated from

the legacy internet, Web 2.0, just like blockchains are isolated from the external world, so much
so that oracles are needed to send information from the external world to a blockchain. As such,
in Point Browser, legacy internet websites such as facebook.com or google.com cannot be
opened. If tried by a user, Point Browser will redirect the user to their normal default browser
instead.

Similarly, decentralized applications running in Point Browser are unable to reach any IP
addresses on the legacy internet. They can only access decentralized storage and decentralized
domains.

This decision makes Point Network a completely separate network, which is designed to be
growing separately from the legacy internet, and due to its clear boundaries can be called Web
3.0.

If it were possible to access Web 2.0 content from Point Browser, it is presumed that a large
number of developers, working on decentralized applications, pressed by deadlines or
motivated by other factors, could go back to their old ways, storing website assets (including
JavaScript code) on centralized storage, using centralized domains, and pinging analytics
servers by IP addresses. By severing the connection to Web 2.0, it forces all developers to
develop decentralized applications in the way they’re completely decentralized not just on
paper, but in implementation as well.

Point Extension
Point Extension is a browser extension that is prepackaged with Point Browser which

provides a helpful user interface and helps dApps communicate with Point Node.

The main extension window, which is opened when clicked on the extension icon, contains a
compact summary of the wallet balances, and allows quick access to additional actions, such as
accessing Wallet, Explorer, Contacts, different dApps and so on.

Point SDK
To help developers efficiently use Point Network capabilities, Point Extension makes

available PointSDK, which becomes accessible on any page as window.point.

Point SDK contains functions which help perform various API calls to Point Node, related,
for instance, to reading from and writing into decentralized storage, managing subscriptions,
etc.

Legacy “Web3.js” SDK
A large number of developers in the blockchain space are familiar with a library called

web3.js produced by the Ethereum community, and associated APIs. One popular blockchain
access software called “MetaMask” popularized this approach, and it was solidified in EIP-1193.

Point Extension is responsible for mimicking this API in order to help with dApp migrations
using as few modifications as possible. It makes available a “web3 provider” object at
window.ethereum which can then be used with web3.js and similar libraries to interact with
Point Chain.

Other chains
dApps on Point Network are not limited to only using Point Chain. Although the UI and the

domains must reside on Point Chain in any case, Point Network is designed to allow users to

switch between several chains. For instance, users can choose to interact with Uniswap (a
popular dApp) on Point Chain, then switch to Uniswap on Ethereum Chain, and then interact
with Uniswap deployed on Polygon Chain.

Because the Point Network project is not just a blockchain, but a whole software suite, it can
connect to several chains simultaneously, depending on chainId.

Similarly, it is not limited to Ethereum-compatible chains. Point Network can be extended to
work with different APIs, such as APIs to access Solana Chain, Polkadot Chain, or Bitcoin Chain,
in order to allow users to interact with Solana dApps, or pay invoices in Bitcoin, directly from
Point Browser, by similarly exposing API endpoints customized to a specific chain (e.g.
mimicking the behavior of Phantom Extension for Solana or polkadot{.js} extension for
Polkadot).

Confirmation window

Because every request, including blockchain interaction requests from dApps, is captured by
PointProxy, it allows Point Network to perform access control before deciding whether to fulfill
a request.

By default, and with some exceptions, read blockchain operations are allowed. dApps are
allowed to query blocks and transactions from every available chain.

However, write operations, such as sending assets, calling smart contract methods requiring
a transaction, etc., have to undergo access control. For that purpose, before fulfilling a request,
Point Extension opens a confirmation window, displaying the request details to the user and
asking whether they intend to perform this action.

Web3 Login
One of the exceptions where a confirmation window is needed for read operations, is “Log In

As”. As mentioned in the “Identity Management” section, a user can have several identities. In
that case, without additional mechanisms, it would have been confusing for Point Network to
determine which identity to expose to the dApp so that it can load related information (such as
the user name and the user’s notifications in a decentralized social media dApp).

For that purpose, a confirmation window for “Log In As” is triggered by request from a dApp,
allowing the user to choose which identity to load.

Notification manager
Point Extension is also responsible for generating user notifications, when they are needed.

At the start of Point Node, and during its operation, it is scanning the blockchain for events
related to the user. It might be new deposits to or withdrawals from the user’s accounts, an
arrival of a new email message on Point Mail, or a custom dApp-generated event.

In that case, Point Extension uses browser API to show a notification, and open the
associated page when the notification is clicked.

Internal Apps
Point Network is prepackaged with internal applications, making it easy for the user to

access core Point Node functionality. Most of the apps are accessible using the URL
https://point/.

Point Home
This is the first page that is opened when the user connects to Point Network. It can contain

a welcome message, basic information about the user’s account, and various links suggesting
where to start exploring Web3.

Point Wallet
An important part of the Point Network’s user interface is the Wallet application.

It allows common operations done from cryptocurrency wallets, such as sending
cryptoassets (cryptocurrencies, tokens, NFTs etc.), receiving them, browsing transaction history
etc. We will describe several modifications proposed to enhance the functionality and usability.

Multi-Chain Support
Because Point Node has the ability to connect to several chains simultaneously, Point Wallet

should not only provide access to cryptoassets on Point Chain, but also on other chains, such as
Ethereum, Polygon, Solana, and others. This way, a user would potentially have the ability to
eventually interact with any cryptocurrency blockchain without leaving Point Browser, provided
that a Point Wallet plugin for that chain exists.

Send to Identity Handles
A user should be able to not just use the legacy way of specifying a recipient (by submitting a

long string of hexadecimal or base-58 characters which is someone’s cryptocurrency address),
but by directly specifying the identity handle. Extra care should be taken to make sure the user
hasn’t mistyped the handle (e.g. by providing a drop-down list with extra information about the
identity as they type, by providing quick access to identities from the contact list, and by
including a button to paste the name from another place).

In transaction history, Point Wallet should attempt to resolve cryptocurrency addresses to
their identity handles instead, where possible.

In the future, more blockchain naming systems should be supported (such as Ethereum
Name System using .eth handles, Unstoppable Domains using .crypto handle, Namecoin with
.bit addresses etc.)

Send to Identity Handles on Different Chains
It is possible to create a mechanism by which a sender can send assets to an identity handle

not only on Point Chain, but on other chains as well, such as Ethereum, Bitcoin or Solana.

One way to achieve this is through users publishing their addresses on these chains in the
identity key-value store (ikv). This way, Point Wallet would infer the type of asset and the chain
from the user’s “From” field, and attempt to detect the existence of a cryptocurrency address on
that chain for the identity selected in the “To” field, and use this address to fulfill the
transaction request.

The proposed above requires a user’s interaction to generate addresses for these chains
beforehand. One improvement might be to pre-generate these addresses (with private keys
derived using HD Wallets derivations, and as such, always accessible to the recipient), and
automatically publish them.

Despite the improvements, both methods would still lack privacy (the same address per
chain would be used by all senders). In the “Privacy” section below we discuss potential
approaches to create uncorrelated addresses for increasing transaction privacy. Readers should
keep in mind that most of those approaches could potentially be applicable not only to Point
Chain transactions, but also to addresses on different chains (i.e. the ideal scenario is for a
sender to be able to create unlimited addresses for the recipient on any existing blockchains,
retaining a mathematical guarantee that the recipient is able to detect and access the funds in
these addresses, with or without a help of an additional encrypted message to point to the right

address, but at the same time, for any external observer, leaving these addresses uncorrelated
both with each other and with the identity).

Vaults (Two-Factor Authentication in Web3)
One of the worst case scenarios that can happen to a cryptocurrency user is their private

key/seed phrase being compromised and in the hands of a malicious party, which would then
lead to a theft of the funds and any other cryptoassets.

In the “Identity Management” section, “Social Recovery” was discussed as one approach to
strengthen security. “Vaults” is another way, which does not involve relying on actions by third
parties.

The idea behind vaults is, first, to be able to create a delay on a certain wallet (presumably,
containing enough valuable cryptoassets that would warrant the extra complications in lieu of
extra security) before finalizing any action on the blockchain. Thus, a successful transaction is
split into a broadcast intention, a time delay which starts from the broadcast intention, and a
completion, if the intention wasn’t contested.

In a hypothetical scenario, a user U creates a vault, configured with a 24 hour delay, and
deposits 100,000 POINTs into its address. Whenever U needs to spend some funds from the
vault, it broadcasts an intention transaction first, then waits for 24 hours, and the transaction is
then automatically confirmed. If the vault’s private key becomes compromised and an attacker
A attempts a theft of funds, A cannot simply complete a withdrawal transaction. A would first
have to create an intention transaction, and U would receive a warning notification about this
transaction in Point Wallet. U can then recognize that the transaction is fraudulent, and has 24
hours to broadcast a cancellation transaction, negating the intention transaction and resetting
the timer. This, without extra mechanisms, would still lead to loss of funds, but it would lead to
a tug-of-war between U and A, in which case, both of them would not receive anything from
this, and this would make targeting vaults less attractive to attackers.

However, this can be improved further to allow full recovery of the vault. A simple variation
would be for U, when creating the vault, to generate an offline key pair, never exposing the seed
phrase online, and then grant that generated wallet address emergency powers on the vault. In
the event of the dispute between U and A, U would prove to the network that U is the original
owner by using the seed phrase (on a hardware that is known not to be compromised) to sign a
recovery transaction and recover the vault’s contents into a wallet address known to be safe.

Note that on its own, the seed phrase stored offline, cannot be used to access the vault. The
vault’s private key is always required to perform any action on it. Any person accidentally
discovering the offline seed phrase might not even be aware that it is connected to the vault in

any way (in this case, the vault smart contract would not use the address openly in plain-text,
but hashed with some “salt” nonce). But in the event of a dispute, the offline seed phrase would
serve to complete the two-factor authentication and, in conjunction with the vault’s private
key, be used to recover the vault.

Privacy
Privacy has been a pain point for many blockchain systems. For instance, in Ethereum it is

common for a person to have one wallet address, and then conduct all business from that
address. Then, it is trivial for anyone to browse all transactions and interactions with dApps for
that person. The privacy level here is similar to a person walking into a supermarket with a
paper attached to their back, listing all previous stores they walked into, the amounts they
spent there and when, and, in some cases, what they bought.

It takes colossal effort in rigorous research, development and testing to develop privacy
solutions correctly. Therefore, the first priority for Point Network is to create a base for the
decentralized internet, focusing more on the censorship-resistance part in the beginning.
However, the privacy preservation side of decentralized internet is of comparable importance,
therefore, sufficient research and development efforts should also be allocated to it.

Privacy preservation is a spectrum, and it can be upgraded gradually. These are several
mechanisms that could be used, separately or altogether, with varying levels of strength:

● Switching Identities in the Browser. Point Node should support switching between
several identities, by using the HD Wallet approach described in the “Identity
Management” section.

● Switching Identities in the Dashboard. Point Dashboard should support the ability to
open a completely different environment when a user logs in with a different seed
phrase (e.g. no cache leaking between identities).

● Feejoin. One of the common privacy solutions is known as coinjoin, a multi-party
transaction where the parties mix their coins together and take back their amounts, but
an external observer has no way of knowing which party owns which part of the output.
While coinjoin is something Point Network could use to increase privacy, it is possible to
also adapt this idea for web3 interaction privacy, what we call feejoin. Right now, if
anyone wants to interact with any dApp smart contract (e.g. posting a tweet on
decentralized social media) from their identity, they must have a sufficient balance of
tokens in that address. This exposes the amount of funds they have, something which
they might desire to not advertise. Even if a user chooses to top-up the identity account
every once in a while from another one, links to that main account can be trivially
established. Feejoin mechanism would allow anyone to pay for any transaction, and then,

when several people desire to interact with dApps, would automatically merge their
fees, such as one person would pay for the transaction of another, and vice versa. This
would make it difficult for external observers to establish which funded wallet belongs
to which identity (and the identity’s wallet can have 0 tokens), because it would be
unclear whether the wallet that has paid for the web3 interaction belongs to the owner
of the identity, or some other feejoin party.

● Payment requests. Traditionally, when a blockchain user desires to receive a payment
from another party, they send their main wallet address. Point Network could provide a
mechanism whereby each time a user clicks ‘Receive’, a different subaddress is
generated. There is no need to remember the seed phrase for that subaddress, because it
uses the HD Wallet mechanism from the “Identity Management” section. However, for
external observers, the addresses would be completely uncorrelated. The difficult parts
of implementing this would then be to efficiently query and consolidate those balances
in the user interface, and merge them when a payment is needed. This would help shift
Point Network from account-based (traditional in Ethereum-like systems) to
UTXO-based privacy level (traditional in Bitcoin-like systems), while still preserving
beneficial account-based capabilities for web3.

● Offline payment requests. Payment requests described above require a user to be
online when the subaddress is generated, but this might not always be the case. For this,
a mechanism might exist by which a sender could generate a unique shared wallet
address, deposit the transaction amount there, and when the recipient comes online,
Point Network would detect the payment and add as part of the balance, while for an
external observer it would be uncorrelated with any other addresses or payments to the
recipient. A naïve approach would be to simply create a new cryptocurrency address,
send funds there, and share the private key to it in an encrypted message to that
identity (which would designate a successful completion of the transfer by the recipient
capturing the payment into another recipient-controlled wallet, and would also allow
the sender to take back the funds in the unsuccessful case or if the recipient never
comes back online). There might be more ways to do this more efficiently, such as
blending keys of the parties in such a way that a sender could create unlimited unique
addresses with guaranteed ability of the recipient (and only the recipient, as opposed to
the previous scenario) to generate the private key required to capture the funds, while it
would take external parties an impractical effort if they try to attempt to establish the
ownership by a bruteforce attack. More research is needed to establish the possibility of
offline payment requests and a path to their implementation.

● Existing privacy projects. Finally, lessons from privacy-preserving projects such as
Monero could be taken, to eventually provide Monero-grade privacy to the network.

Point Explorer
Traditionally, software that allows users to browse the contents of a blockchain in a

human-readable format has been called block explorers. Normally, it is run on a centralized
server, and users are left with the only option to trust the data provider.

By making Point Explorer an internal application as part of the auditable software suite,
running on a user’s computer instead of on a centralized server, it would be possible to increase
the level of security and trust to the data output, and move block explorers further into
decentralization.

Point Node could still use other nodes on the network to query the data, but it would run
ad-hoc checks (Merkle proof validation, state transition result validation etc.) in order to verify
the validity of conclusions before displaying them in the browser.

Additionally, there are some extra views that could be specific to Point Explorer and which
should be supported, such as displaying and verifying NFTs, and exploring the list of identities
and all properties, transactions and assets associated with them (for example, a detailed history
of dApp deployments on a certain decentralized domain).

Potential Applications
This section describes potential applications that could become possible once Point Network

is fully implemented. It does not mean that the authors seek to implement all of the described
applications, but it provides general guidelines and suggestions for teams that would be
attempting to work on them.

Censorship-resistant websites
One type of content that can exist on web3 is simply static websites. One of the differences

between them and websites on web 2.0 is that websites on Point Network do not reside in a
central location, and instead live on decentralized internet, which makes them resistant to
censorship attempts.

Since every part of the tech stack is decentralized (domains, storage, identities), there is no
central point of failure to attack.

Another beneficial property of websites residing on web3 is that every update to the website
is a transaction on the blockchain. This allows all updates to be publicly auditable, and also
allows to create multisig setups, whereby every update has to be approved by N out of M parties,

which improves security by shifting the requirements needed to make malicious modifications
to a website from compromising any one party (any developer working on the website), which is
the situation right now on web2.0, to compromising several members of the team (see
“Multi-Signature Actions on Identities” subsection under “Identity Management”).

Interacting with dApps on several chains

- - - -

Note to the reader: this section is not finalized yet, please follow our roadmap:

https://roadmap.pointnetwork.io

and the URL this document is hosted on for new versions:

https://pointnetwork.io/link/whitepaper

- - - -

Decentralized End-to-End Encrypted Email
> See https://penumbra.zone/crypto/primitives/fmd.html and the linked

https://eprint.iacr.org/2021/089

To hide metadata/relationship graph: Hide by fuzzy recipient and hiding sender inside

https://roadmap.pointnetwork.io
https://pointnetwork.io/link/whitepaper
https://penumbra.zone/crypto/primitives/fmd.html
https://eprint.iacr.org/2021/089

Decentralized Social Media

Decentralized Facebook, Reddit and Discord

Decentralized Youtube

Decentralized Telegram

Decentralized Zoom
Audio video calls

Supporting Communities and Content Creators

Storage Archives

Decentralized Github

Digital Collectibles (e.g. art NFTs and game assets)

Signatures and Badges

Manageable Personal Data/KYC Identities

Digital Canaries

E-commerce

Zero-knowledge targeted advertising

DAO, Crowdfunding and Governance

Point Network for Enterprise

Conclusion

References
[Al Hasib and Haque, 2008] Al Hasib, A. and Haque, A. A. M. M. (2008). A comparative study of the
performance and security issues of AES and RSA cryptography. Proceedings - 3rd International Conference
on Convergence and Hybrid Information Technology, ICCIT 2008, 2(May):505–510.

[Alabdulwahhab, 2018] Alabdulwahhab, F. A. (2018). Web 3.0: The Decentralized Web Blockchain
networks and Protocol Innovation. 1st International Conference on Computer Applications and Information
Security, ICCAIS 2018, pages 1–4.

[Anderson, 2019] Anderson, P. D. (2019). Edward Snowden: Permanent record. Ethics and Information
Technology, 22(2):129–132.

[Baumgart and Mies, 2007] Baumgart, I. and Mies, S. (2007). S/Kademlia: A practicable approach towards
secure key-based routing. Proceedings of the International Conference on Parallel and Distributed Systems -
ICPADS, 2.

[Bellare et al., 2000] Bellare, M., Kilian, J., and Rogaway, P. (2000). The security of the cipher block
chaining message authentication code. Journal of Computer and System Sciences, 61(3):362–399.

[Benet, 2014] Benet, J. (2014). IPFS - Content addressed, versioned, P2P file system.

[Benet and Greco, 2017] Benet, J. and Greco, N. (2017). Filecoin: A decentralized storage network.
Protocol Labs.

[Brevini, 2017] Brevini, B. (2017). WikiLeaks: Between disclosure and whistle-blowing in digital times.
Sociology Compass, 11(3):1–11.

[Buterin, 2014] Buterin, V. (2014). Secret sharing and erasure coding: A guide for the aspiring Dropbox
decentralizer.
https://blog.ethereum.org/2014/08/16/secret-sharing-erasure-coding-guide-aspiring-dropbox-decentrali
zer/. Accessed: 2021-07-10.

[Coddington, 2017] Coddington, A. (2017). Mass Government Surveillance: Spying on Citizens. Cavendish
Square Publishing LLC.

[Dale Liu et al., 2009] Dale Liu, Caceres, M., Robichaux, T., Forte, D. V., Seagren, E. S., Ganger, D. L.,
Smith, B., Jayawickrama, W., Stokes, C., and Jan Kanclirz, J. (2009). Next generation SSH2
implementation: Securing data in motion. Syngress Publishing, pages 41–64.

[Daniel and Tschorsch, 2021] Daniel, E. and Tschorsch, F. (2021). IPFS and friends: A qualitative
comparison of next generation peer-to-peer data networks. arXiv e-prints.

[DeNardis, 2007] DeNardis, L. (2007). A history of internet security. Information Society Project, pages
681–704.

[Dessouky et al., 2020] Dessouky, G., Frassetto, T., Jauernig, P., Sadeghi, A. R., and Stapf, E. (2020). With
great complexity comes great vulnerability: From standalone fixes to reconfigurable security. IEEE
Security and Privacy, 18(5):57–66.

[Feigenbaum and Koenig, 2014] Feigenbaum, J. and Koenig, J. (2014). On the feasibility of a technological
response to the surveillance morass. Cambridge Security Protocols Workshop.

[Gunitsky, 2015] Gunitsky, S. (2015). Corrupting the cyber-commons: Social media as a tool of autocratic
stability. Perspectives on Politics, 13(1):42–54.

[Hallam and Zanella, 2017] Hallam, C. and Zanella, G. (2017). Online self-disclosure: The privacy paradox
explained as a temporally discounted balance between concerns and rewards. Computers in Human
Behavior, 68:217–227.

[Harris, 2020] Harris, T. (2020). Unregulated tech mediation, inevitable online deception, societal harm.
Center for Humane Technology.

[Hubbard, 2020] Hubbard, S. (2020). Opinion: Forget bias, the real danger is big tech’s overwhelming
control over speech.
https://edition.cnn.com/2020/10/28/perspectives/section-230-hearing-big-tech/index.html. Accessed:
2021-07-09.

[Kierstead, 2021] Kierstead, A. (2021). The parler shutdown.
https://law.unh.edu/blog/2021/01/parler-shutdown. Accessed: 2021-07-09.

[Kopel, 2013] Kopel, K. (2013). Operation seizing our sites: How the federal government is taking domain
names without prior notice. University of California, 28:859–900.

[Lear, 2018] Lear, S. (2018). The fight over encryption: Reasons why congress must block the government
from compelling technology companies to create backdoors into their devices. Cleveland State Law
Review, 66(2).

[Molloy, 2021] Molloy, D. (2021). Opinion: Forget bias, the real danger is big tech’s overwhelming control
over speech. https://www.bbc.com/news/world-middle-east-57570044. Accessed: 2021-07-09.

[Moshirnia, 2018] Moshirnia, A. (2018). No security through obscurity: Changing circumvention law to
protect our democracy against cyberattacks. Brooklyn Law Review, 83(3):1279–1344.

[Nadler and Collins, 2017] Nadler, J. and Collins, D. (2017). RE: Competition in the Digital Marketplace.
Americans for Financial Reform Education Fund.

[Otala et al., 2021] Otala, J. M., Kurtic, G., Grasso, I., Liu, Y., Matthews, J., and Madraki, G. (2021).
Political polarization and platform migration: A study of parler and twitter usage by United States of
America congress members. Companion Proceedings of the Web Conference 2021, pages 224– 231.

[Politou et al., 2020] Politou, E., Alepis, E., Patsakis, C., Casino, F., and Alazab, M. (2020). Delegated
content erasure in IPFS. Future Generation Computer Systems, 112(September):956–964.

[Produit, 2018] Produit, B. (2018). Using blockchain technology in distributed storage systems. University
of Tartu, pages 1–14.

[Rivest et al., 1978] Rivest, R., Shamir, A., and Adleman, L. (1978). A method for obtaining digital
signatures and public-key cryptosystems. Massachusetts Institute of Technology.

[Rogers, 2020] Rogers, R. (2020). Deplatforming: Following extreme Internet celebrities to Telegram and
alternative social media. European Journal of Communication, 35(3):213–229.

[Shane et al., 2017] Shane, S., Rosenberg, M., and Lehren, A. W. (2017). Wikileaks releases trove of
alleged c.i.a. hacking documents. https://www.nytimes.com/2017/03/07/world/europe/wikileaks-cia-
hacking.html. Accessed: 2021-07-09.

[Slobogin, 2007] Slobogin, C. (2007). Privacy at risk: The new government surveillance and the Fourth
Amendment. University of Chicago Press.

[Slupska et al., 2021] Slupska, J., Lowrie, J., Irani, L., and Stefan, D. (2021). How secrecy leads to bad
public technology. UC San Diego. [Snowden, 2019] Snowden, E. (2019). Permanent record. MacMillan.

[Storj, 2018] Storj (2018). Storj: Decentralized cloud storage network framework. Storj Labs.

[Tiwari, 2019] Tiwari, A. (2019). Big tech monopoly: Effects, desirability and viable regulations.

[van der Schyff et al., 2020] van der Schyff, K., Flowerday, S., and Furnell, S. (2020). Duplicitous social
media and data surveillance: An evaluation of privacy risk. Computers and Security, 94.

[Al Hasib and Haque, 2008] Al Hasib, A. and Haque, A. A. M. M. (2008). A comparative study of the
performance and security issues of AES and RSA cryptography. Proceedings - 3rd International
Conference on Convergence and Hybrid Information Technology, ICCIT 2008, 2(May):505–510.

[Alabdulwahhab, 2018] Alabdulwahhab, F. A. (2018). Web 3.0: The Decen- tralized Web Blockchain
networks and Protocol Innovation. 1st International Conference on Computer Applications and
Information Security, ICCAIS 2018, pages 1–4.

[Alwazzeh et al., 2020] Alwazzeh, M., Karaman, S., and Shamma, M. N. (2020). Man in the middle attacks
against ssl/tls: Mitigation and defeat. Journal of Cyber Security and Mobility, pages 449–468.

[Anderson, 2019] Anderson, P. D. (2019). Edward Snowden: Permanent record.
Ethics and Information Technology, 22(2):129–132.

[Augier, 2016] Augier, M. (2016). Trustworthy cloud storage. Technical report, EPFL.

[Banupriya et al., 2021] Banupriya, S., Kottursamy, K., and Bashir, A. K. (2021). Privacy-preserving
hierarchical deterministic key generation based on a lattice of rings in public blockchain. Peer-to-Peer
Networking and Ap- plications, 14(5):2813–2825.

[Baumgart and Mies, 2007] Baumgart, I. and Mies, S. (2007). S/Kademlia: A practicable approach towards
secure key-based routing. Proceedings of the International Conference on Parallel and Distributed Systems -

ICPADS, 2.

[Bellare et al., 2000] Bellare, M., Kilian, J., and Rogaway, P. (2000). The se- curity of the cipher block
chaining message authentication code. Journal of Computer and System Sciences, 61(3):362–399.

[Benet, 2014] Benet, J. (2014). IPFS - Content addressed, versioned, P2P file system.
[Benet and Greco, 2017] Benet, J. and Greco, N. (2017). Filecoin: A decentral- ized storage network.

Protocol Labs.
[Brevini, 2017] Brevini, B. (2017). WikiLeaks: Between disclosure and whistle- blowing in digital times.

Sociology Compass, 11(3):1–11.
[Buterin, 2014] Buterin, V. (2014). Secret sharing and era- sure coding: A guide for the aspiring dropbox

decentralizer. https://blog.ethereum.org/2014/08/16/secret-sharing-erasure-coding-guide-
aspiring-dropbox-decentralizer/. Accessed: 2021-07-10.

[Buterin, 2021] Buterin, V. (2021). Why we need wide adoption of social recov- ery wallets.
[Coddington, 2017] Coddington, A. (2017). Mass Government Surveillance: Spying on Citizens. Cavendish

Square Publishing LLC.
[Dale Liu et al., 2009] Dale Liu, Caceres, M., Robichaux, T., Forte, D. V., Sea- gren, E. S., Ganger, D. L.,

Smith, B., Jayawickrama, W., Stokes, C., and Jan Kanclirz, J. (2009). Next generation SSH2
implementation: Securing data in motion. Syngress Publishing, pages 41–64.

[Daniel and Tschorsch, 2021] Daniel, E. and Tschorsch, F. (2021). IPFS and friends : A qualitative
comparison of next generation peer-to-peer data net- works. arXiv e-prints.

[DeNardis, 2007] DeNardis, L. (2007). A history of internet security. Informa- tion Society Project, pages
681–704.

[Dessouky et al., 2020] Dessouky, G., Frassetto, T., Jauernig, P., Sadeghi,
1. R., and Stapf, E. (2020). With great complexity comes great vulnera- bility: From stand-alone

fixes to reconfigurable security. IEEE Security and Privacy, 18(5):57–66.

[Feigenbaum and Koenig, 2014] Feigenbaum, J. and Koenig, J. (2014). On the feasibility of a technological
response to the surveillance morass. Cambridge Security Protocols Workshop.

[Gagnaire et al., 2012] Gagnaire, M., Diaz, F., Coti, C., Cerin, C., Shiozaki, K., Xu, Y., Delort, P., Smets,
J.-P., Le Lous, J., Lubiarz, S., et al. (2012). Downtime statistics of current cloud solutions. International
Working Group on Cloud Computing Resiliency, Tech. Rep.

[Gunitsky, 2015] Gunitsky, S. (2015). Corrupting the cyber-commons: Social media as a tool of autocratic
stability. Perspectives on Politics, 13(1):42–54.

[Hallam and Zanella, 2017] Hallam, C. and Zanella, G. (2017). Online self- disclosure: The privacy
paradox explained as a temporally discounted balance between concerns and rewards. Computers in

Human Behavior, 68:217–227.

[Harris, 2020] Harris, T. (2020). Unregulated tech mediation, inevitable online deception, societal harm.
Center for Humane Technology.

[Hubbard, 2020] Hubbard, S. (2020). Opinion: Forget bias, the real danger is big tech’s overwhelming
control over speech. https://edition.cnn.com/2020/10/28/perspectives/section-230-hearing-

big-tech/index.html. Accessed: 2021-07-09.

[Khovratovich and Law, 2017] Khovratovich, D. and Law, J. (2017). Bip32- ed25519: hierarchical
deterministic keys over a non-linear keyspace. In 2017 IEEE European Symposium on Security and
Privacy Workshops (Eu- roS&PW), pages 27–31. IEEE.

[Kierstead, 2021] Kierstead, A. (2021). The parler shutdown.
https://law.unh.edu/blog/2021/01/parler-shutdown. Accessed: 2021-07-09.

[Kopel, 2013] Kopel, K. (2013). Operation seizing our sites: How the federal government is taking domain
names without prior notice. University of Cal- ifornia, 28:859–900.

[Lear, 2018] Lear, S. (2018). The fight over encryption: Reasons why congress must block the government
from compelling technology companies to create backdoors into their devices. Cleveland State Law
Review, 66(2).

[Martiny et al., 2018] Martiny, I., Miers, I., and Wustrow, E. (2018). Proof of censorship: Enabling
centralized censorship-resistant content providers. In International Conference on Financial
Cryptography and Data Security, pages 99–115. Springer.

[Molloy, 2021] Molloy, D. (2021). Opinion: Forget bias, the real danger is big tech’s overwhelming
control over speech. https://www.bbc.com/news/world- middle-east-57570044. Accessed: 2021-07-09.

http://www.bbc.com/news/world-
http://www.bbc.com/news/world-

[Moshirnia, 2018] Moshirnia, A. (2018). No security through obscurity: Chang- ing circumvention law to
protect our democracy against cyberattacks. Brook- lyn Law Review, 83(3):1279–1344.

[Nadler and Collins, 2017] Nadler, J. and Collins, D. (2017). RE: Competition in the Digital Marketplace.
Americans for Financial Reform Education Fund.

[Otala et al., 2021] Otala, J. M., Kurtic, G., Grasso, I., Liu, Y., Matthews, J., and Madraki, G. (2021).
Political polarization and platform migration: A study of parler and twitter usage by Nnited States of
America congress members. Companion Proceedings of the Web Conference 2021, pages 224– 231.

[Palatinus et al., 2013] Palatinus, M., Rusnak, P., Voisine, A., and Bowe, S. (2013).
Bips/bip-0039.mediawiki at master · bitcoin/bips.

[Politou et al., 2020] Politou, E., Alepis, E., Patsakis, C., Casino, F., and Alazab, M. (2020). Delegated
content erasure in IPFS. Future Generation Computer Systems, 112(September):956–964.

[Produit, 2018] Produit, B. (2018). Using blockchain technology in distributed storage systems. University
of Tartu, pages 1–14.

[Rashid et al., 2019] Rashid, M., Singh, H., and Goyal, V. (2019). Cloud storage privacy in health care
systems based on ip and geo-location validation using k-mean clustering technique. International
Journal of E-Health and Medical Communications (IJEHMC), 10(4):54–65.

[Rivest et al., 1978] Rivest, R., Shamir, A., and Adleman, L. (1978). A method for obtaining digital
signatures and public-key cryptosystems. Massachusetts Institute of Technology.

[Rogers, 2020] Rogers, R. (2020). Deplatforming: Following extreme Internet celebrities to Telegram and
alternative social media. European Journal of Communication, 35(3):213–229.

[Shakor et al., 2019] Shakor, M. Y., Khaleel, M. I., and Abed, F. S. (2019). Enhancing cloud storage privacy
(csp) based on hybrid cryptographic tech- niques. Journal of the University of Garmian, 6:1.

[Shane et al., 2017] Shane, S., Rosenberg, M., and Lehren, A. W. (2017). Wikileaks releases trove of
alleged c.i.a. hacking docu- ments. https://www.nytimes.com/2017/03/07/world/europe/wikileaks-cia-
hacking.html. Accessed: 2021-07-09.

[Slobogin, 2007] Slobogin, C. (2007). Privacy at risk: The new government surveillance and the Fourth
Amendment. University of Chicago Press.

[Slupska et al., 2021] Slupska, J., Lowrie, J., Irani, L., and Stefan, D. (2021).
How secrecy leads to bad public technology. UC San Diego.

[Snowden, 2019] Snowden, E. (2019). Permanent record. MacMillan.

[Storj, 2018] Storj (2018). Storj: Decentralized cloud storage network frame- work. Storj Labs.

[Taylor, 2019] Taylor, A. (2019). Decrypting ssl traffic: best practices for secu- rity, compliance and
productivity. Network Security, 2019(8):17–19.

[Tiwari, 2019] Tiwari, A. (2019). Big tech monopoly: Effects, desirability and viable regulations.
[van der Schyff et al., 2020] van der Schyff, K., Flowerday, S., and Furnell, S. (2020). Duplicitous social

media and data surveillance: An evaluation of privacy risk. Computers and Security, 94.
[Williams and Jones, 2018] Williams, S. and Jones, W. (2018). Arweave light- paper.

http://www.nytimes.com/2017/03/07/world/europe/wikileaks-cia-
http://www.nytimes.com/2017/03/07/world/europe/wikileaks-cia-

